Network Intrusion Detection Systems (NIDS) are critical to maintaining situational awareness on
enterprise networks.

While tools like Bro NIDS are widely used, the Department of Defense (DoD) maintains a set of custom
regular expressions (regexes) to additionally scan data for threats.

To maintain pace with future increases in network traffic volume, the DoD must process log events at a rate
of 1,250 events per second and up to 2,500 events per second during brief spikes of network activity.

Research Question: Can we leverage Apache Spark to develop novel algorithms that can perform regex
matching on log data at a rate of 2,500 events per second?

@ .‘)‘pcwr‘lgZ

Monitor with Bro NIDS

e (g =P e ey () —p B
X Q

Network Traffic Store as Event Logs Store in Queue Apply Regular Flagged Events
Expressions

Figure 1: Anomaly Detection Work Flow. Data from network access points is monitored by Bro NIDS. and
stored in event logs and in an event queue. The goal is to apply custom regular expressions to events
streaming from the queue to detect malicious Uniform Resource Identifiers (URISs) in real-time.

» NIDS on DoD High-Performance Computing (HPC) Systems log gigabytes of events daily, producing event
streams that must be further scanned for malware.

» Exploit kit and ransomware authors often develop custom string mutation algorithms to generate malicious
Uniform Resource Identifiers (URIs) in HTTP requests.

« The DoD maintains and updates its own custom set of regexes for detecting malicious URIs.

+ To instill confidence that the network was not compromised, these regexes are applied to a stream of events
that have already been passed through Bro NIDS.

» Apache Spark is an open source parallel computing framework that is widely considered the successor to
Apache Hadoop. Its advantages over Hadoop include:

- A speedup over Hadoop of at least 10 times.

- Support for design flows beyond MapReduce.

- Enabling speedup on multicore systems.

- Leveraging Resilient Distributed Datasets (RDDs) to conduct fault-tolerant parallel operations.
- Supporting lazy evaluation and distributed in-memory processing of intermediates.

- Allowing a user to specify the number of partitions with which to split input data.

Ch8lIv4F 10.0.0.4 192.168.1.48 GET b.scorecard.com

Ins_site=bloomberg&type=hidden
Clz5TR2B 10.0.0.41 192.168.1.184 HEAD pontiac2.mil /Software/SiteStat.xml
C54Ekr28 10.0.0.137 192.168.1.184 HEAD pontiac2.mil /Software/SiteStat.xml
CclH3B2u 10.0.0.137 192.168.1.184 GET pontiac2.mil /Software/EPOAGENT/Catalog.z
C1D8pnn2 10.0.0.4 192.168.1.3 GET z.cdn.turner.com Ixslo/cvp.swi?profile=expansion

Figure 2: Excerpt from an event stream. Each event is on a separate line in the NIDS event stream.

Leveraging Apache Spark for Real-Time Regex Matching on Bro Log Data

Cadets Sean Deaton, David Brownfield, Leonard Kosta, and Bob Zhu
Advisor: Dr. Suzanne J. Matthews

» We designed a novel parallel algorithm that leverages Apache Spark for parallel regex matching.

+ We ran our implementation on ERDC’s High Performance Computer, Topaz.

» The work described in this poster is the result of our year-long capstone research project. We (the student
authors) wrote all the code, ran all the experiments, and produced all the figures described in this work. Our
faculty advisor was a valuable source of mentorship and guidance.

+ Our algorithm utilizes the Map-Reduce paradigm, which is divided into two distinct phases: Map and
Reduce.

» Map Phase: Events are examined in parallel using regexes. Events that match a regex are “flagged” and
passed to the combiner with regex info.

» Reduce Phase: A union operation is performed on each event’s set of regex information, which is outputted
to the user.

+ In the example below, we consider n events and 3 partitions. Event 1, 5, and n will trigger our set of regexes

Event 1 " —} (event 1: regex1) ’
- ' ap
Partition 1 el (event 1: regexs) [\
Event 2
Queue q Event 3 q Map el (event 5: regex 1) ' — Combiner
Partition 2 Q

Partition 3 Eventn q Map : el (VeNt N: regex;) '

Figure 3: Map Phase. Each mapper receives a partition of events and runs the set of regular expressions on
it. If there is a match with a regular expression, the event id is passed to the combiner, along with the
information for that match, including the regexID, and fieldID. For simplicity, we represent the information
associated with regex 1 as regex1.

event 1, (regexy, regex,) s Reduce el event 1: “regex regex,’ '

Combiner q event 5, (regex) — Reduce el €VENt 5: “regex;” X

event n, (regex,

) — Reduce - €VENt N: ‘regex,’ '

Figure 4: Reduce Phase. Each reducer receives from the combiner an eventlD and a set of associated
matches. For each event, the reducer simply combines all the matches into a single string.

Experimental Data: The DoD provided a dataset consisting of 31 million events collected from Ft. Hood, TX
and 569 sample regular expressions.

Experimental Platform: The DoD provided access to Topaz, a DoD HPC Cluster consisting of 3,468 nodes
each with 36 cores @ 2.3GHz and 117GB of RAM.

+ The DoD cluster is used for many other purposes other than regex matching; as a result, we want to use as
few resources as possible to achieve real-time performance (e.g., 2500 events per second).

0.825

Speedup
«w
Time (s)
°
&

0.275

2500 5000 7500 10000 12500 15000
Number of Events

1 4 8 16 36
Number of Cores

Figure 5: Speedup vs Number of Cores. Increasing Figure 6: Time vs Number of Events. Our approach
the number of the cores increases the speedup of our can process just under 15,000 events per second

approach. using 36 cores to meet the defintion of real-time.
1 4 8 16 36 2500 5000 7500 10000 12500 15000
1250 1372 0516 0418 0.364 0.385 Time (s) 0.437 0.536 0.640 0.743 0.837 1.024
2500 2.557 0.813 0.544 0.470 0.437 . ™
Table 2: Event Processing Scalability. Average

. o time in seconds to process n events on 36 cores.
Table 1: Timing Events. Average time in seconds to

process 1,250 and 2,500 events on n cores.

+ Coverage Experiments: We tested our approach on 12,205 random samples of 2,500 events from the Ft.
Hood dataset and observed that our approach takes an average of 1.57 seconds to proccess each sample.

« ERDC processes approximately 108 million events per day.
+ We are able to process 108 million events within 12 hours, exceeding ERDC'’s given definition of real-time.
« This will rapdily increase the rate at which ERDC is currently able to process network traffic.

» The project will be delivered to ERDC inside a Docker container, allowing it to be used across Army
installations for detecting malicious traffic.

+ For improvements, we seek to obtain a set of log events tagged as malcious or benign to perform supervised
machine learning and evaluate the correlation between URIs and malicious network traffic.

+ We also would like to study how the complexity of the regex can impact load-balancing. Specifically, using
the First Fit Decreasing Algorithm to group regexes by peformance time might improve current runtimes.

DOD

Spark

MODERNIZATION PROGRAM

