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ABSTRACT
Predicting the popularity of social media content enables
companies and individuals to affect user behavior on-line.
These effects may be manipulative and malicious in their na-
ture, to include the spreading of false information. Reddit,
an open-source social media platform, is an excellent vector
for transmitting false information, and has come under fire
in the past for witch-hunts, rumor-mongering, and doxxing.
In this paper, we examine the efficacy of machine learning at
predicting Reddit comment popularity. For our experiment,
we used features commonly associated with Reddit popular-
ity derived from literature. We tested our approach on a
dataset of over two million Reddit comments. Supervised
machine learning classifiers were fit with a limited feature
set and accuracy consistently ranged from 42.0% to 52.7%
with a Cohen’s kappa score ranging from −0.160 to 0.056.
Given the low kappa statistic, these results do not indicate
the success of the combination of features and classifiers we
chose to classify the popularity of comments.

1. INTRODUCTION
The popularity of on-line media profoundly impacts our

activity on-line. Popularity implies that content is vetted by
other users and worthy of our time. Many companies devote
a vast amount of resources to predict the future popularity
of on-line material. If they had an automated method for
instantly predicting the popularity of a Reddit comment,
this could be extremely valuable for marketing campaigns
or targeted advertising. More concerning however, would
be its use to a malicious actor. If an individual knew what
features led to popularity in a subreddit, he or she could ma-
nipulate comments in the community to spread propaganda.
As many individuals use Reddit as a news source [1], they
could be presented with false information that is seemingly
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vetted by the community.
Reddit is a popular social media website where users share

news, pictures, video, and other types of media. While the
Pew Research Center estimates that only 4% of Americans
use Reddit [1], the site’s self-aggregated statistics indicate
that there were 234 million unique visitors in December
2015, and approximately 8 billion unique page views [10].
Reddit attracts an audience that is roughly equally male
and female (53% vs. 47%) and an equal parity of U.S. ver-
sus International users (54% vs. 46%) [10].

In addition to sharing media, users who create accounts on
the website can subscribe to communities known as “subred-
dits”, which enables them to keep track and interact with
content of personal interest. Each subreddit has its own
community page. Users use voting to move particular top-
ics to the top of a subreddit. Posts with a high number of
positive votes (“upvotes”) rise to the top of of a community’s
front page, where they have a high chance of being viewed
by other visitors to the subreddit.

Increasingly, visitors use Reddit as a news source. In a
recent survey, approximately 70% of surveyed Reddit users
indicated they use the site as their primary news source [1].
For the 2016 Presidential campaign for instance, 45% of
Reddit users used the site to track the election. This is
on-par with other social media platforms such as Facebook
and Twitter, which were estimated at 52% and 43% respec-
tively [1]. Politicians and celebrities have taken notice; sev-
eral have done Q&As with Reddit users on the website, no-
tably Presidents Barack Obama and Donald Trump, and
former presidential candidate Bernie Sanders [2].

However, the site does have a history of inspiring vigilan-
tism, with victims frequently having their personal informa-
tion posted on the Internet (a practice known as doxxing).
One notable example included Sunil Tripathi, a missing stu-
dent who was made a leading suspect in the Boston Marathon
bombings before the true culprits were identified. Reddit
general manager later issued an apology in which he con-
demned the “witch-hunts and dangerous speculation.” [9]

Reddit has made efforts to curb the spread of misinfor-
mation. In November 2016, Reddit banned the PizzaGate
subreddit from the site, stating that they “don’t want witch-
hunts on our site” [8]. This resulted in a backlash from users
on r/theDonald, who stated the move amounted to cen-
sorship. Reddit changed the way its front-page algorithm
works after users of the /TheDonald were allegedly exploit-
ing the algorithm to spam the front page with pro-Trump



messaging. One moderator has been subjected to threats.
The CEO has been hesitant to ban the subreddit due to the
controversy it could cause; however, posts stickied from the
subreddit have been banned from the front page [6]

In this paper, we seek to determine if the popularity of
comments on particular Reddit posts can be predicted us-
ing popular machine learning techniques. In the context of
Reddit, comments that are rated as popular tend to show
near the top of a post’s comment page. Theoretically, a
reader can be influenced by the top comments on a post’s
page.

We hypothesized that the same features commonly mark-
ing a post as being popular can be applied to comments
as well. To test our hypothesis, we surveyed the literature
for features commonly associated with post popularity and
machine learning techniques that have been used to predict
Reddit popularity in the past. We tested our hypothesis
through obtaining, fitting, and testing two million Reddit
comments through three different supervised machine learn-
ing classification algorithms. Our experimental methodol-
ogy was also derived from the literature.

The results were less favorable, showing accuracy worse-
than-random, with extremely low kappa statistics. With
our results, there is no evidence to suggest that the set of
identified features allow a user to predict the popularity of
a comment. Tailoring a comment to achieve popularity in
any given subreddit may be more nuanced than focusing on
any sole feature, making it difficult for a malicious actor to
unfairly alter their comment.

The rest of the paper is organized as follows. Section 2
gives relevant background information, while Section 3 gives
an overview of our experimental methodology. We discuss
our results in Section 4. Lastly, we conclude in Section 5.

2. BACKGROUND
Reddit is entirely open source. As such, the algorithm

for determining a post’s popularity is open for inspection.
In a post on Hacking and Gonzo, the author explores this
algorithm and notes that submission time and the score of
the post, denoted by the amount of upvotes minus down-
votes. The score is logarithmic [12], meaning that the first
ten upvotes are equivalent to the next 100 and so on.

2.1 Popularity
One way Reddit classifies popularity is by describing a

post as hot. When classified as hot, a post becomes promi-
nently featured on the subreddit. Hotness is determined by
the score of the post on a logarithmic scale such that the first
ten upvotes produce the same weight as the next one hun-
dred. This number is then added to the number of seconds
since epoch divided by 45,000. This shows that time has a
large impact on how prominently a post is features [12].

This is not applicable to comments, as the algorithm would
favor comments posted closer to the post’s original submis-
sion time [12]. Rather, the best overall comment should
appear first in the responses, regardless of time of submis-
sion. This is done by utilizing a confidence sort [12]. The
confidence sort balances the number of upvotes and down-
votes, the algorithm for which is shown in the source code
figure 2. A comment with 10 upvotes and 1 downvote would
have a higher confidence score than a post with 40 upvotes
and 20 downvotes, and thus be ranked higher and appear
closer to the original post.

1 f _confidence(ups, downs):
2 n = ups + downs
3 if n == 0:
4 return 0
5 z = 1.281551565545
6 p = float(ups) / n
7 left = p + 1/(2*n)*z*z
8 right = z*sqrt(p*(1-p)/n + z*z/(4*n*n))
9 under = 1+1/n*z*z

10 return (left - right) / under
11

12 f confidence(ups, downs):
13 if ups + downs == 0:
14 return 0
15 else:
16 return _confidence(ups, downs)

Source Code 1: Source code for Reddit’s confidence
sort, translated [12].

The algorithm looks only at number of votes and the dis-
parity between upvotes and downvotes. While the algorithm
shows how comments are ranked as more popular that oth-
ers, the relationship between upvotes and comments is un-
clear. Thus, our primary experimental goal was to try and
identify the set of features that make users upvote a partic-
ular comment.

2.2 Related Work
Several researchers have attempted to study what makes

Reddit posts popular, with varying levels of success. For
example, two independent studies [5, 3] have pointed to the
time of day as being an important indicator for a post mak-
ing it to the front page, particularly 0900 PST. Lakkaraju et.
al. studied [7] the importance of submission titles in predict-
ing the popularity of posts containing images. The authors
concluded that sentiment is a strong predictor and is specif-
ically niche to particular communities. Furthermore, polar-
izing posts, determined by some sentiment analysis, fair bet-
ter than neutral ones [7]. Certain subreddits inherently get
more up votes than others, to include r/funny, which also
ties to the fact that images are also more highly upvoted.
The authors also found that the title of the post should be
similar to the wording used within the community, but at
the same time novel to introduce dissimilarity.

A student paper at Stanford [15] attempted to classify
posts to subreddit based on post title alone. In preprocess-
ing, they removed each common word and counted number
of instances. Every tenth post was used to the actual model
while the other nine were used for training. In classifying,
they applied three main algorithms to classify post titles:
linear classification, Multinomial Naïve Bayes, and support
vector machines (SVM). They concluded that a SVM clas-
sifier performed best on the test set, with an accuracy of
96.46% on 2 subreddits and 84.91% on 10 subreddits.

In a blog post published in 2016, DataStories analyzed
the trends found in the top 100 posts that occur on the
Reddit front page [3]. For their analysis, they scraped the
top 100 posts for every 2 minutes for 22 days. They deleted
any posts that were on the front page for less than 2 min-



utes. This yielded a total of 2, 344 unique posts. Their
findings supported the work of the earlier researchers, in-
cluding the importance of posting time, the relative success
of polarizing posts compared to neutral ones, and the rela-
tive success of positive headlines to stay on the front page
for a long time [3]. While image posts do tend to get more
upvotes than textual votes, the latter tends to stay on the
front page longer, and receives more comments than image
submissions. They also found that certain subreddits domi-
nate the front page, such as r/funny, r/pics, r/gifs. Top
posts that put numbers in their headlines also increase the
likelihood that posts are make the front page. Lastly, the
authors note that the average lifetime for a post on the front
page is 4 hours and 15 minutes; over 85% of the posts get
to the front page in less than 3 hours [3].

In 2016, Tracy Rohlin studied Reddit post popularity as
the subject of his masters thesis [11]. He gathered data from
six subreddits. Only the first 1, 000 posts in a subreddit
were considered. Each post was first preprocessed and rep-
resented as a feature vector using the bag of words (BOW)
model, term frequency – inverse document frequency (TFIDF),
or Linear Dirichlet Allocation (LDA). Each post in a sub-
reddit was labeled “popular” or “unpopular” by comparing
its voting score to a threshold. The resulting feature vec-
tor was fed into either a Naïve Bayes classifier (NBC) or a
support vector machine (SVM). The accuracy of each classi-
fication was above 50% for each subreddit. The author notes
that lowering the text length cutoff would have increased the
dataset size and possibly increased model accuracy.

Most research in this field has been performed on Reddit
posts. Posts are the primary mechanisms for content deliv-
ery on Reddit. Many users are dubbed lurkers, or users
who only consume content and rarely ever make comments.
These users may also only look at the original post and never
make it to the underlying comments. However, comments
are a great method for delivering in-depth and directed re-
sponses to other users. This makes it an ideal mechanism
to perpetuate false information or perform targeted attacks.
If a malicious actor knew what would be popular within
the subreddit, they could more easily gain support from the
community to achieve their objectives. The main contri-
bution of our work is providing an initial analysis of how
feasible it would be for a malicious actor to manipulate fea-
tures of a comment to make them more popular.

3. METHODOLOGY
We study the performance of the Naïve Bayes and Sup-

port Vector Machine classifiers, as Rohlin used these in his
thesis, DataStories [3], and also utilized by students at Stan-
ford. In addition, we examined a Decision Tree classifier, as
we hypothesized that this classifier would also work well.

For experimentation, we utilized the Department of De-
fense’s High Performance Computing cluster, Topaz, pro-
vided by ERDC, the U.S. Army Engineering Research and
Development Center. The cluster has 3, 456 nodes with 36
cores of Intel’s Xeon E5-2699v3, clocked at 2.3GHz. Each
node has 117 GB of RAM available to it. Since our approach
was serial in its design, we utilized only one node with one
core. However, the project’s analysis speed certainly bene-
fited from the increased memory available on Topaz. The
cluster was running 64-bit SuSE Linux and Python version
2.7.10.

Table 1: Selected Features
Moderator Status Hour of creation [3]

Sentiment of comment [3] Controversiality
Bag of words [11] -

{;}

JSON CSV

✓

Preprocessing Fit data Test data Classify

,

Figure 1: Preprocessing

3.1 Data and Feature Set
The data was derived from a post on r/datasets [14].

Uncompressed, the size of the comments was 30 GB and in-
cluded 53, 851, 542 comments. The dataset represents only
comments posted in reply to a post and did not include the
original post. Each line of the file was in JSON and included
all of the following fields: score_hidden, name, link_id,
body, downs, created_utc, score, author, distinguished, id,
archived, parent_id, subreddit, author_flair_css_class, au-
thor_final_text, gilded, retrieved_on, ups, controversiality,
subreddit_id, and edited.

Table 3.1 shows the features selected for analysis. The
bag of words was selected as it was the sole feature analyzed
in Rohlin’s thesis. Rohlin obtained better-than-random re-
sults using only the bag of words, suggesting it might also
a good feature for comment popularity [11]. In the DataS-
tories blog post, it was found that 0900 PST was the best
time to obtain upvotes [3]. While this examined only posts,
the same might also hold true for comments as well. While
there was nothing in literature to suggest that moderator
status or controversiality would affect popularity, we pre-
dicted they would be good features to examine. Moderators
are usually vetted members on Reddit and frequently post in
the subreddits they moderate. Given this, we hypothesized
that their status as an authority figure within a subreddit
may improve their chances of getting upvotes on a partic-
ular comment. The DataStories blog post also found that
comments with polarizing sentiments, either overly positive
or negative, yielded the most upvotes [3]. While it does
not directly translate, this polarity in sentiment could im-
ply that those comments are extremely controversial within
a subreddit.

3.2 Preprocessing
For prepossessing, we selected two million comments ran-

domly from the original dataset. The number two million
was an arbitrary choice; it enabled us to collect enough data
to fit the classifier without being overly time-consuming to
process. First, the body of each comment is stripped of any
function words and made lowercase. Function words were
defined as anything in the Python nltk function word cor-
pus. The sentiment of each post is also determined using the
Python TextBlob library and the University of Pittsburgh’s
subjectivity Lexicon [16]. Each comment without at least
two upvotes and at least twenty words in the body are fil-
tered out. This ensures that comments entirely ignored by
the community do not skew the classifiers. The created_utc
field is stripped to leave just the hour [3].

A dictionary is instantiated such that there is a separate



key for each particular subreddit, and the value is an empty
list. We iterated through each comment and appended the
number of upvotes to the list corresponding to the com-
ment’s subreddit. At the conclusion of this step, the num-
ber of upvotes for each comment was contained within a
list stored in the dictionary. To label popularity, each list
was first sorted and then the index of the top quartile se-
lected. The number at that index represented the threshold
for popularity for that subreddit; anything above it was pop-
ular and anything below was unpopular. We then iterated
over the comments again, checked the number of upvotes
and properly labeled the comment as popular or unpopular.
This was the true popularity label.

As in Rohlin’s thesis, we defined popularity as the top
25% of posts within a subreddit [11]. Since popularity varies
wildly between subreddits, this is an important distinction.
If popularity was relative to the entire dataset, it is likely
that a different subset of comments would be removed by
the preprocessing step in our experiment. Each subreddit’s
comments were written to individual CSV files inside a di-
rectory with the final fields including: distinguished, body,
sentiment, hour of creation, and controversiality. Finally,
we removed a number of unpopular comments from each
subreddit’s dataset such that the number of unpopular com-
ments equaled the number of popular comments. This was
supported by Rohlin’s thesis [11]. This ensured that we
had the same number of unpopular and popular comments
and also established a baseline for classification. To achieve
better-than-random accuracy, each classifier needed a score
better than 50%.

3.3 Classification
After post-processing 239,099 comments were left span-

ning 8,259 subreddits. The top five subreddits with the most
comments after post-processing were examined for classifi-
cation. Each CSV file is read in separately. Each field con-
taining text is label encoded, producing an integer that the
classifier can read. For example, if a comment is popular,
the popular field is set to 1, where false would be 0. The
body of the text is turned into a vector where each index
represents a distinct word. The number at that index rep-
resents the frequency that word appears in the comment.

As in Rohlin’s thesis, 20% of the data was saved for test-
ing. The remaining 80% was used for training the classi-
fiers [11]. Each classifier was fitted with both the features
and popularity label from the training data. Each classi-
fier then predicted the popularity of the testing data with-
out knowing the true popularity label. Finally, the accu-
racy, precision, recall, F1, and Cohen’s kappa statistic were
computed using the predicted values in comparison to the
true popularity label for each prediction. The average value
across each every prediction within that subreddit was used
for the computation of the accuracy, precision, and recall
values.

Accuracy is a measurement of how many predictions were
accurately labeled. This is the metric by which we sought to
rank each classifier. Recall is defined by number of true pos-
itives over the true positives and false negatives combined,
as shown in equation 1. This shows the the ability of the
classier to properly classify comments.

Precision is the total number of true positives over both
true positives and false positives combined. It returns a
percentage of the classifier’s ability to not falsely label com-

ments. The F1 score is a weighted average of both precision
and recall.

recall =
tp

(tp+ fn)
(1)

precision =
tp

(tp+ fp)
(2)

F1 = 2 · (precision ∗ recall)
(precision+ recall)

(3)

Cohen’s kappa statistic is a measurement of the classi-
fier’s ability to use fitted data to properly label comments.
Given that half of our dataset is classified as unpopular, a
naïve classifier could easily achieve 50% accuracy simply by
guessing that every comment is unpopular. If this is the
case, the kappa statistic will determine that predictions are
due to chance (closer to zero) and not due to accurate fitting
(closer to one). If this were case, the recall score would also
be low, as the classifier would be indicating comments as
popular when they truly are not. All of these scores range
from zero to one, with one being more favorable for our
experimentation [13].

4. RESULTS
Accuracy ranged from 42.0% to 52.7%. The Cohen’s

kappa statistic ranged from −0.160 to 0.056. Anything close
to zero indicates that our classifier’s popularity prediction
agreed with the true popularity label mainly on chance. In
the case of the negative statistic, this represents certain fea-
tures hurt the classifier’s ability to make random guesses.
These two scores indicate that every classifier yielded worse-
than-random results. To reference Table 2 we found no
pattern in determining which classifier performed the best.
r/destinythegame, however, produced the highest kappa
statistic with the Decision Tree classifier.

The F1 score in table 2 only shows the balance between
recall and precision. The low score indicates a rather signif-
icant imbalance between the two. In every case, precision
was higher than recall. Given the definition of recall in equa-
tion 1, this indicates that predictions included more false
negatives than false positives. In the context of our exper-
iments, false negatives correspond to labeling comments as
unpopular when they truly are popular. This means that a
naïve classifier could consistently label comments as unpop-
ular and still achieve high accuracy.

The accuracy numbers are lower than expected and no
classifier achieved better-than-random results. Given the
way the data was split, with 50% of the data being classi-
fied as popular and 50% classified as unpopular, a better-
than-random accuracy score would be greater than 50% with
a high kappa statistic. We hypothesized that we would
achieve better-than-random results with a much higher kappa
statistic than what our experiment yielded. We based this
hypothesis on Rohlin’s previous work classifying the popu-
larity of Reddit posts using solely a bag of words [11]. While
The goal of this paper was not to validate Rohlin’s results,
we were attempting to apply his work to Reddit comments.
However, this was not a perfect recreation. We did not
use the same subreddits and we incorporated other features
not used in Rohlin’s thesis, mainly metadata. For certain
subreddits, we included two to three times as many data
points. We also examined each classifier’s ability to utilize



r/worldnews (3,031) r/todayilearned (2,242) r/news (2,058)
Classifier Accuracy Kappa F1 Accuracy Kappa F1 Accuracy Kappa F1

Linear SVM 0.471 -0.057 0.471 0.520 0.037 0.495 0.521 0.042 0.498
Decision Tree 0.525 0.051 0.524 0.520 0.045 0.538 0.457 -0.087 0.462
Naïve Bayes 0.503 0.007 0.506 0.511 0.021 0.495 0.516 0.032 0.514

Table 2: Statistics of “fact”-related subreddits 50%

r/destinythegame (1,917) r/leagueoflegends (1,862)
Classifier Accuracy Kappa F1 Accuracy Kappa F1

Linear SVM 0.507 0.009 0.469 0.527 0.045 0.470
Decision Tree 0.524 0.056 0.556 0.469 -0.071 0.408
Naïve Bayes 0.507 0.015 0.507 0.420 -0.160 0.409

Table 3: Statistics for “gamer” subreddits 50%

fitted data, rather than make random guesses, to classify
popularity with Cohen’s kappa statistic.

5. CONCLUSIONS AND FUTURE WORK
Most data analysis on Reddit has been preformed ex-

clusively on posts. In this experiment, we examined solely
comments and produced a novel serial implementation to
preprocess and classify the popularity of two million Reddit
comments. Through the fitting and testing of these com-
ments on three different supervised machine learning classi-
fiers, we determined each classifier’s ability to predict Red-
dit popularity. With a mixture of features representing both
metadata and content, we found no evidence suggesting that
popularity is determined by this feature set. Each classifier
produced worse-than-random accuracy scores and extremely
low kappa statistics. The latter indicates that the classifiers
guessed to produce their predictions. We were unable to
validate the results produced by other authors conducting
similar experiments, which may be attributed to a differ-
ence in context between posts and comments. Comments,
we now hypothesize, are more sensitive to the original post
and other comments in reply to the original post. Future
work should attempt to quantify this context for further
classification of comment popularity.

The results of this experiment do not mean that it is im-
possible to tailor comments to garner more upvotes from the
community. Rather, it means that the same features that
make posts popular are not the same features that make
comments popular. Additional work should focus on identi-
fying these features. Reddit users should not let their guard
down and trust comments solely because of their popularity.
Especially for fact-based subreddits, a myriad of different
sources should be analyzed before trusting any particular
comment.

For future work, one could vastly improve the rate at
which comments are preprocessed. Although the implemen-
tation is functional, it is entirely naïve and inefficient. There
are several instances where our preprocessor needlessly loops
over the data. Furthermore, it would be entirely possible
to parallelize the preprocessing step. Implementing both
of these improvements would allow for a higher volume of
comments to use for testing. This could potentially improve
the accuracy of classification. If possible, the data should
also be pulled immediately from Reddit. The dataset that
we pulled, by the time is was aggregated and submitted for
others to work on, was already outdated as it contained

comments from 2015. Even if our results suggested machine
learning could classify the popularity of Reddit comments,
accuracy may not be as high on currently popular comments.

Given the nature of comments, we believe that future
work should include three specific features in experimen-
tation: the time relative to the original post, the number of
comments previously posted, and the similarity in sentiment
between the original post and the comment. With the re-
sults obtained in this experiment, we propose that comment
popularity is influenced more by context, both relative to
the original post and to other comments, and similarity to
the original post. While this seems contrary to how com-
ments are sorted on Reddit, as time is not a factor in the
confidence scoring, it seems intuitive that if there exists only
one comment to a post, that comment would receive more
upvotes than a comment in a pool of several other replies.

The subjectivity lexicon used for determining sentiment
could be more comprehensive. The University of Pitts-
burgh’s lexicon was chosen because it was freely available
under the GNU Public License and originally seemed like
a good fit for our experiments. It classified specific words
as being positive or negative. However, the lexicon includes
only 8, 000 words. While this seems like a large enough sum,
for a platform like Reddit, it may not be enough. Further-
more, many users of Reddit intentionally misspell or alter
words. For example, in the popular subreddit r/rarepuppers,
the word ’puppy’ is intentionally spelled ’pupper.’ The senti-
ment of ’pupper’ would not be classified by the lexicon even
though it should likely have the same sentiment as ’puppy.’

To assist others with training future classifiers, all of the
work and results of these experiments are available freely on
GitHub [4].
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8. APPENDIX

1 from __future__ import absolute_import
2 import csv
3 import sys
4 import time
5 import json
6 import re
7 import os
8 import datetime
9 import nltk

10 nltk.download("stopwords")
11 from nltk.corpus import stopwords
12 import sklearn
13 from textblob import classifiers
14

15 def read_JSON_as_dict(file_name):
16 dict_of_subs = {}
17 for line in open(file_name, 'r'):
18 json_object=(json.loads(line.lower()))
19 subreddit = json_object["subreddit"]
20 dict_of_subs.setdefault(subreddit, []).append(json_object)
21 return dict_of_subs
22

23 def remove_function_words(dict_of_subs):
24 dict_of_all_words = {}
25 for sub, list_of_comments in dict_of_subs.iteritems():
26 for comment in list_of_comments:
27 comment_list = wordList = re.sub("[^\w]", " ", comment["body"]).split()
28 comment["body"] = comment_list
29 for word in comment_list:
30 dict_of_all_words[word] = dict_of_all_words.get(word, 0) + 1
31 comment["body"] = ([word for word in comment_list if word not in stopwords.words("english")])
32 return dict_of_subs
33

34 def filter_votes_length(dict_of_subs):
35 dict = dict_of_subs
36 for sub, list_of_comments in dict.iteritems():
37 dict[sub] = [comment for comment in list_of_comments if int(comment["ups"]) \
38 >= 2 if len(comment["body"]) >= 20]
39 return dict
40

41 def determine_if_popular(training_dict):
42 dict_of_upvotes = {}
43 for sub, list_of_comments in training_dict.iteritems():
44 sub_list = []
45 for comment in list_of_comments:
46 sub_list.append(int(comment["ups"]))
47 sorted_list = sorted(sub_list)
48 dict_of_upvotes[sub] = int(sorted_list[(len(sorted_list)/2)])
49 for sub, list_of_comments in training_dict.iteritems():
50 for comment in list_of_comments:
51 comment["body"] = " ".join(comment["body"])
52 comment["created_utc"] = datetime.datetime.fromtimestamp(int(comment["created_utc"])).strftime("%H")
53 comment["sentiment"] = str(sentiment_clf.classify(comment["body"]))
54 if comment["distinguished"]!="":
55 comment["distinguished"] = "not_distinguished"
56 if (int(comment["ups"]) >= dict_of_upvotes[sub]):
57 comment["popular"] = True
58 else: comment["popular"] = False
59 return training_dict
60



61 def get_sentiment(training_dict):
62 for sub, list_of_comments in training_dict.iteritems():
63 for comment in list_of_comments:
64 comment["sentiment"] = 0
65

66 def write_csv(file_name, training_list_of_comments):
67 headers = ["ups", "popular", "subreddit", "body", "controversiality", "created_utc", \
68 "distinguished", "sentiment"]
69 with open(os.path.join("subreddit_twomillion_50_2_csv", file_name), "wb") as file:
70 w = csv.DictWriter(file, fieldnames=headers, extrasaction="ignore")
71 w.writeheader()
72 for comment in training_list_of_comments:
73 w.writerow(comment)
74 file.close()
75

76 lexicon = "lexicon.txt"
77 lexicon_csv = csv.reader(open(lexicon, "rb"), delimiter=" ")
78 sentiment_list = [(l[2].replace("word1=", ""), l[5].replace("priorpolarity=", "")) for l in lexicon_csv]
79 print("training the sentiment classifier")
80 clf_timer = time.time()
81 sentiment_clf = classifiers.NaiveBayesClassifier(sentiment_list)
82 print("It took {0}s to train the sentiement classifier".format(time.time() - clf_timer))
83

84 if __name__ == "__main__":
85 print("Starting the timer.")
86 file_name = str(sys.argv[1]) if len(sys.argv) > 1 else ("logs/RC_2015-01")
87 print file_name
88 start_time = time.time()
89 dict_of_subs = read_JSON_as_dict(file_name)
90 print("It took {0} to read the file.".format(time.time() - start_time))
91

92 dict_of_subs_no_function_words = remove_function_words(dict_of_subs)
93 dict_of_subs_stripped = filter_votes_length(dict_of_subs_no_function_words)
94 dict_reduced = {k: v for k, v in dict_of_subs_stripped.items() if v}
95

96 dict_tagged = determine_if_popular(dict_reduced)
97 for k, v in dict_tagged.items():
98 write_csv(str(k)+".csv", v)
99 print("total time: {0}.".format(time.time() - start_time))



1 import sys
2 from os import listdir
3 from os.path import isfile, join
4 import os
5 import numpy as np
6 import pandas
7 import random
8 import copy
9

10 from sklearn import neighbors, datasets, preprocessing
11 from sklearn.feature_extraction.text import CountVectorizer
12 from sklearn.model_selection import train_test_split, cross_val_score, cross_val_predict
13 from sklearn.metrics import accuracy_score, cohen_kappa_score, precision_recall_curve, average_precision_score,\
14 recall_score, f1_score
15

16 from sklearn.svm import SVC
17 from sklearn.tree import DecisionTreeClassifier
18 from sklearn.naive_bayes import GaussianNB
19

20 classifiers = [
21 SVC(kernel="linear", C=1),
22 DecisionTreeClassifier(criterion="entropy", random_state=0),
23 GaussianNB()]
24 names = [
25 "Linear SVM",
26 "Decision Tree",
27 "Naive Bayes"]
28 '''
29 We need to get the number of lines in the file to ensure we have enough comments for our training set.
30 http://stackoverflow.com/questions/845058/how-to-get-line-count-cheaply-in-python
31 '''
32 def file_len(fname):
33 with open(fname) as f:
34 for i, l in enumerate(f):
35 pass
36 return i + 1
37

38 if __name__ == "__main__":
39 sub_path = "subreddit_twomillion_csv"
40 files = [f for f in listdir(sub_path) if isfile(join(sub_path, f)) if file_len(join(sub_path, f))>1750]
41 for f in files:
42 data = pandas.read_csv(os.path.join(sub_path, f))
43

44 '''
45 Init an encoder to turn our data into something the classifier can read.
46 '''
47 popular_encoder = preprocessing.LabelEncoder()
48 data.popular = popular_encoder.fit_transform(data.popular.tolist())
49

50 distinguished_encoder = preprocessing.LabelEncoder()
51 data.distinguished = distinguished_encoder.fit_transform(data.distinguished.tolist())
52

53 sentiment_encoder = preprocessing.LabelEncoder()
54 data.sentiment = sentiment_encoder.fit_transform(data.sentiment.tolist())
55

56 '''
57 Convert the text into a vector where each index represents a word.
58 The number in that index represents the frequency that word appears.
59 '''
60 cv = CountVectorizer()
61 list_of_body = data.body.as_matrix()
62 bag = cv.fit_transform(list_of_body)



63 word_freq = bag.toarray()
64

65 '''
66 Select our features and stack it with the bag of words.
67 Our labels indicate our popularity.
68 '''
69 columns = ["distinguished", "sentiment", "created_utc", "controversiality"]
70 features = np.hstack((data[list(columns)].values, word_freq))
71 labels = data.popular.values
72

73 '''
74 Split our data for testing and validation.
75 Create/open a file to append results to.
76 Iterate through the classifiers to fit the data and obtain predictions.
77 '''
78 X_train, X_test, y_train, y_test = train_test_split(features, labels, train_size=0.80, \
79 test_size=0.20, random_state=random.randint(1,10000))
80 scaler = preprocessing.StandardScaler().fit(X_train)
81 X_train = scaler.transform(X_train)
82 X_test = scaler.transform(X_test)
83 file = open("results/clf_results_1750.dat","a+")
84 print("\nTesting subreddit: {0} with {1} comments.\n".format(f.replace(".csv", ""), \
85 file_len(join(sub_path, f))))
86 for (name, clf) in zip(names, classifiers):
87 clf.fit(X_train, y_train)
88 y_pred = clf.predict(X_test)
89

90 '''
91 Obtain measurements to see how well our classifier works.
92 '''
93 precision, recall, thresholds = precision_recall_curve(y_test, y_pred)
94 acc_score = accuracy_score(y_test, y_pred)
95 avg_precision = average_precision_score(y_test, y_pred)
96 avg_recall = recall_score(y_test, y_pred)
97 f1 = f1_score(y_test, y_pred)
98 kappa_stat = cohen_kappa_score(y_test, y_pred)
99

100 print("Cohen Kappa: %0.3f, Accuracy:%0.3f, Precision:%0.3f, Recall:%0.3f, F1:%0.3f\n" \
101 % (kappa_stat, acc_score, avg_precision, avg_recall, f1))


