
What Makefile? Detecting Compiler Information
Without Source Using The Code Property Graph

Sean Deaton
Blue Star and Bogart Associates

Columbia Maryland, USA
sean.deaton@proton.me

Abstract—Users frequently lack access to the underlying source
code and build artifacts of the programs they use. Without
access, uncovering information about programs, such as compiler
information or security properties, becomes a difficult task.
Various methods exist for static analysis testing on source code
languages, but few tools work solely with the executable machine
code. This paper proposes constructing the code property graph
from a program’s lifted machine code to observe structural
differences between other executables. We implement our ap-
proach with the Binary Ninja Intermediate Language (BNIL)
and the graph2vec neural embedding framework to create
embedded representations of the graphical properties of the
program. Downstream applications, such as supervised machine
learning, can then analyze these representations. We demonstrate
the effectiveness of our approach by training a supervised
random forest classifier on the embedded graphs to determine,
at the function level, which compiler, clang or gcc, created
the executable the function belongs to. Our results achieved an
accuracy of 100% across our testing set of 25,600 samples.

Index Terms—compiler, code property graph, static analysis,
Binary Ninja, graph2vec

I. INTRODUCTION

Many tools exist to detect information about a program
statically. Termed Static Application Security Testing (SAST),
these applications parse the source code in some way, without
running it, to arrive at a conclusion about the program. In
many cases, this conclusion is about the security of a program.
Some compilers implement static application testing to warn
users of potential errors and optimize the code. In other cases,
companies sell SAST tools commercially to parse source code
for vulnerabilities. [1]

Except for open-source software, only on rare occasions is
source code provided to the end-user for inspection alongside
the executable program. Without access, users must trust that
the original software developers correctly implemented the
program and did not introduce any security flaws. Alterna-
tively, users can use a disassembler or decompiler to inspect
the program. However, this process can be challenging as
decompilers can never fully reconstruct the source code as they
typically optimize for binary size or execution speed instead
of reproducibility [2].

Over the years, decompilers have improved in reconstruct-
ing accurate C syntax (which we call pseudo-C since there
are usually no guarantees about the ability to recompile it), as

Funding provided by Blue Star and Bogart Associates under the Internal
Research and Development program.

noted by Liu and Wang in [3]. However, they still largely lack
accurate type recovery and the ability to derive meaning from
heavily optimized routines [2]. While there have been attempts
to improve these facets when returning machine code to the
original source [2] [4], many instead focus reversing efforts
on intermediate languages given that they can often be more
meaningful and expressive [3].

Researchers have recently focused on automatically inspect-
ing compiled executables for software vulnerabilities or other
artifacts instead of manually reviewing decompiled programs.
In [5], the authors demonstrate the use of IDA Pro in disassem-
bling compiled machine code to detect suspicious API calls.
Yuan and Ding introduced a method for detecting stack-based
buffer overflows without source code in [6].

One particularly effective tool for automated analysis is
Joern [7]. Joern is a Scala program that creates the code
property graph, discussed in Section II, for each function in a
program and allows users to query specific attributes about
its execution. A researcher could, for example, search for
all blocks of code reachable from a given parent block or
examine all statements where the input to a function is read.
Joern primarily supports source code languages such as C and
Java, though it does support x86 and amd64 executables
by decompiling the executable with Ghidra and parsing the
pseudo-C syntax [7].

Using the code property graph, especially those created
by Joern, for downstream applications is not a novel idea.
For example, both Xiaomeng et al. in [8] and Xu et al. in
[9] trained deep learning models on the code property graph
generated from vulnerable and not-vulnerable source code
functions. In [10], Haojie et al. further extended the code
property graph constructed by Joern with the function call
graph to detect cross-function vulnerabilities when source code
is available.

However, most of these applications require either the avail-
ability of source code or the output of Ghidra’s decompilation
as pseudo-C. Given that source code is not always provided
and decompilation is not exact, there exists a gap in many
of these models for real-world applications. We propose that
lifting a program’s machine code to an intermediate language
and then creating the code property graph will fill this gap.

258

2022 IEEE 4th International Conference on Trust, Privacy and Security in Intelligent Systems, and Applications (TPS-ISA)

978-1-6654-7408-5/22/$31.00 ©2022 IEEE
DOI 10.1109/TPS-ISA56441.2022.00039

https://orcid.org/0000-0001-7179-2656

A. Motivation

Manual reverse engineering is a tedious task. Although
nothing can replace inspecting a program in a decompiler,
we seek to automatically uncover as much information as
early as possible before a reverse engineer ever looks at
the decompiled output. Early access to information would
enable reverse engineers to hone in on particular functions
or subroutines of a program to search for specific artifacts.

In this paper, we introduce a workflow that performs anal-
ysis on executables without source code to derive information
from the graphical structure of the program automatically. We
do this by 1) lifting the syntax of each function in a program
to an intermediate language to extract as much meaningful
information as possible; 2) creating a graphical representation
of the intermediate language by constructing the code property
graph for each function; 3) training an unsupervised graph
neural network on the whole structure of the graph to yield the
graph embeddings. The output can yield information about the
structural similarities or differences between functions. We test
our approach by detecting the graphical differences introduced
in each function by two different compilers - clang and gcc.

B. Contributions

We make the following contributions to static analysis and
security testing:

• Implementation of the code property graph from an
intermediate language. We demonstrate that it is possible
and meaningful to create the code property graph on
executables without using source code or decompiling
the executable back to some source code language (for
example, pseudo-C) by instead using an intermediate
language.

• Detection of the compiler used to create the executable.
We show that the embedded features of the code property
graph can be given to a machine learning model to
accurately predict which compiler (clang versus gcc)
created the executable.

II. BACKGROUND

A. Code Property Graph

Much work has been done on analyzing source code and
its syntax as a formal language. However, this can naturally
lose semantic meaning, as program and data dependencies can
be difficult to retain [11]. Instead, researchers have developed
methods to view a program as a graph to retain its structure
and semantics. Viewing the program in this manner avoids
problems with other methods, such as natural language pro-
cessing, that may rely on the sequence or frequency of program
statements.

Compilers use the abstract syntax tree to represent and nest
program statements - it provides the program’s structure. The
tree’s innermost nodes consist of operators, and the leaf nodes
contain the operands [12]. The typical graph view found in
most decompilers, the control flow graph, was first described
by Alan Frances in [13]. The control flow graph depicts the

different basic blocks a program can visit based on conditional
properties, the quintessential example being an if statement.
Ferrante et al. later created the program dependence graph
in [14] to show data and control dependencies explicitly. Note
that the program dependence graph does not maintain the order
of execution of program statements. Instead, the graph depicts
which statements must have been executed before reaching
another statement.

Most recently, Yamaguchi et al. in [12] developed the code
property graph. This graph combines the abstract syntax tree,
control flow graph, and program dependence graph to gain
the advantages of each one. The abstract syntax tree provides
the program’s statements; the control flow graph describes the
order in which the statements execute; the program depen-
dence graph preserves the dependencies needed to reach each
statement. The code property graph has since been used to
discover vulnerabilities in programs such as the Linux kernel
[12] and validate those included in the National Institute of
Standards and Technology’s Software Assurance Reference
Dataset [15].

B. Graphical Embeddings

Although we can represent programs in this graph-
structured manner, it is of little use to many downstream
analytical tasks in its raw state. Many of these tasks, including
classification and clustering, require fixed-length feature vec-
tors [16]. However, fixed-length vectors are naturally an ill fit
for graphs, which can have any number of nodes and edges.

Various methods have been developed to learn the em-
beddings of graphical structures and emit the result as a
fixed-length feature vector compatible with machine learn-
ing models. node2vec was developed to understand and
preserve the neighborhood of nodes [17]. Similarly, Deep
Graph Kernels were proposed in [18] to learn the latent
representation of graphs by understanding the paths between
nodes. subgraph2vec was proposed in [19] to encode
rooted subgraphs for use in downstream classifiers such as
convolutional neural networks and support vector machines.

These models, however, cannot learn the representation of
entire graphs. graph2vec was proposed by Narayanan et al.
in [16] to solve this issue and learn the embeddings for entire
graphs.

C. Intermediate Languages

Intermediate languages position themselves in between
source code and machine code. In contrast to assembly, they
provide a richer notation that allows downstream applications,
such as compilers, to optimize the program. Generally, they
are extremely expressive, strongly typed, and provide fewer
instructions than assembly.1

One example of the expressiveness of intermediate lan-
guages comes from implementing a property known as static
single-assignment (SSA) form. Developed by Cytron et al. in
[22], SSA form requires that each variable only be assigned

1Compare Intel’s 981 x86-64 mnemonics [20] to Ghidra’s 72 P-Code
operations [21].

259

once. Subsequent uses that involve reassignment of the same
variable generate new version numbers. Version numbers help
clarify the possible contents of a variable at a particular site.
Several of the following intermediate languages implement
SSA form.

1) LLVM: Many static analysis tools operate on the LLVM
intermediate language [23] [24] [25]. The native support from
Clang and ubiquitous tooling make it popular for security
researchers to perform analysis. However, LLVM is typically
emitted from source code. Lifting machine code to LLVM is
difficult because of the strongly typed memory model [26],
though there are tools that do so with several caveats [27]
[28].

2) P-Code: P-Code is an intermediate language imple-
mented by the National Security Agency’s open source reverse
engineering framework, Ghidra. P-Code lifts machine code
with the goal being to emit the pseudo-C code shown by
the decompiler. It supports most popular architectures, such
as amd64, powerpc, and mips. Community members have
implemented other, more niche architectures given Ghidra’s
open-source status.

P-Code is comprised of three main elements:
p-code operations that change the processor state
and mimic machine code instructions; an address space
which represents a sequence of bytes that can be read or
written to by p-code operations; and varnodes that
represent registers or memory address locations inside of an
address space. [29]

3) Microcode: The Interactive Disassembler (IDA) by Hex-
Rays lifts machine code to their intermediate language, Mi-
crocode. Microcode is a very mature intermediate language by
virtue of being included with IDA and given its 24 years of
development [30].

There are 72 Microcode instructions, each in the form:
opcode left, right, destination where the latter
three elements represent the operands of the opcode. An
opcode can represent different instructions, such as shifting
values, generating conditions, and moving values.

Each opcode performs only one operation without side
effects which can simplify meaning. Consequently, however,
each assembly instruction will map to several opcodes. This,
along with its verbose syntax, can make it difficult for reverse
engineers to understand.2

Instead of reading the Microcode directly, the syntax maps
to a ctree (similar to an abstract syntax tree) that cleans up
the output. The intent is for the ctree to naturally map to
pseudo-C syntax, which many reverse engineers find desirable
[30].

4) BNIL: The Binary Ninja Intermediate Language (BNIL)
is a collection of intermediate languages developed by Vector
35 for their reverse engineering framework, Binary Ninja. It
supports a number of different architectures including arm,
x86, amd64, and powerpc. Developers can add support for
additional languages via architecture plugins.

2This is intentional and noted by the creator of the language. However,
improving readability is one area Hex-Rays is working to improve [30].

BNIL is made up of four key abstraction languages:
the Lifted Intermediate Language (Lifted IL), Low Level
Intermediate Language (LLIL), Medium Level Intermediate
Language (MLIL), and High Level Intermediate Language
(HLIL). Lifted IL literally translates instructions into ar-
chitecture agnostic semantic instructions. LLIL takes those
same instructions to create conditionals from instructions that
operate on flags. MLIL introduces variables and their type
information based on register and memory accesses. MLIL
generates function call sites with their parameters based on the
detected calling convention. HLIL abstracts MLIL by adding
control flow information and removing code that it determines
the program cannot reach (dead code elimination) [31].

5) Other: A myriad of other intermediate languages also
exist. BAP (Binary Analysis Platform) by Carnegie Melon
University is used with popular downstream tools such as
Mayhem and CWE Checker. [32] The VEX intermediate
language is used in angr for concolic execution [33]. The
Reverse Engineering Intermediate Language (REIL) is an-
other well-defined intermediate language but lacks widespread
adoption in downstream applications and reverse engineering
workflows [34].

III. METHODS

Figure 1 presents an overview of our classification process.
We breakdown this approach into four phases: 1) preprocess-
ing of the executables into Binary Ninja database files; 2)
construction of the code property graph for each function in
each of the Binary Ninja database files, saved as GraphML
files [35]; 3) fitting of the graph2vec unsupervised machine
learning model with the GraphML files; 4) training and clas-
sification using the supervised Random Forest Classification
machine learning model.

1) Intermediate Language Selection: We selected Binary
Ninja’s Intermediate Language (BNIL) as our intermediate
language of choice for the following reasons:

• Binary Ninja uses BNIL and exposes the API through a
Python console in the GUI. Native access inside the de-
compiler makes it ideal for practical reverse engineering
compared to representations such as BAP or VEX, which
are primarily used by downstream tools like angr.

• The API is open source.
• Researchers and developers can add support for other

architectures via architecture plugins.
• The commercial license allows interfacing with BNIL

without the GUI via exposed Python bindings.
In contrast, we dismissed Hex-Ray’s Microcode because,

although it does include Python bindings, we found the docu-
mentation surrounding the Microcode API to be insubstantial.
Furthermore, the cost was prohibitive at $1975 for the pro-
fessional license. [36]. We did not consider the cheaper home
license because it provides access to only a single architecture
and sends back markup information to Hex-Rays.

Ghidra does provide a well-documented API for interacting
with P-Code; however, the bindings can only be accessed
with an included analyzeHeadless executable and not

260

Fig. 1. Compiler classification workflow.

directly imported as with Binary Ninja. Furthermore, the
languages supported, Java and Jython 2.7, are incompatible
with popular machine learning frameworks like sklearn, which
are implemented in Python. [37]

Given that Ghidra and IDA provide access to the underlying
abstract syntax tree (or ctree in IDA’s case), it would be
trivial to implement our methods with either intermediate
language.

2) Dataset: Our downstream model performs supervised
learning, meaning we must have executables with binary labels
corresponding to the compiler used to create each program -
clang or gcc. For this dataset, we used a subset of the
executables compiled in [38] and made initially available on
Zenodo at [39]. The programs in the dataset consist of shared
libraries compiled from the Linux from Scratch book,3 version
9.1-systemd published March 1st, 2020.

In particular, we selected all of the programs compiled
for the amd64 architecture without any optimizations (the
-o0 flag) for both clang and gcc. This resulted in
1,937 and 1,938 samples, respectively. All the executa-
bles between the two compiler sets were identical save for
libelf-0.178.so, which was compiled for gcc and not
clang. We removed this file from the dataset so that the
sets were identical. We also removed any .mod and .a
files to leave only ELF files. This resulted in 2,972 samples
split equally between clang and gcc. Shared libraries were
used in lieu of linked executables to avoid any optimizations
performed on the executable at link time [39]. We selected
this architecture and optimization level to limit the number
of independent variables; further experiments could test our
approach to detecting other compiler combinations.

The executables were relatively small, with the largest
being clang-10 at 207.7 MB and the smallest being
all_video.module at 492 bytes. The median size was
30.8 KB and the mean 2.6 MB.

A. Preprocessing

Using the Binary Ninja headless API made available with
the commercial license, our preprocessor iterated over our

3http://www.linuxfromscratch.org/lfs/index.html

dataset to create Binary Ninja database files (abbreviated as
.bndb files). Each .bndb contains the analysis results that
Binary Ninja performs on the executable. Each database file
includes any found symbols, function boundaries, and the
disassembly results for the entire executable. The .bndb files
provide access to the BNIL used in the following stages. The
total number of .bndb files are equal to our dataset’s total
number of executables.

B. Code Property Graph Creation

Following the prepossessing performed by Binary Ninja, we
pass each .bndb to a Binary Ninja plugin that we created to
construct the code property graph for each function in the
executable. We consider only functions that are not thunks.
We define a thunk-ed function as one that invokes a tail call4

within two HLIL operations.5

We construct the code property graph by first creating the
abstract syntax tree. For this, we consider Binary Ninja’s HLIL
syntax in SSA form. To build the abstract syntax tree, we first
have to consider the main entry point of the function. To do
so, we consider the first basic block without incoming edges.
This represents the entry point of the function. When all of the
functions’ basic blocks have incoming edges, we check if any
of the blocks have incoming back edges. Back edges can occur
when a function begins with a for or while loop, where the
conditional check of the loop dominates the inner execution of
the loop. Because Binary Ninja’s HLIL eliminates dead code
branches, we did not observe any functions that did not meet
one of these conditions. We present the algorithm in Listing
1.

We then consider each HLIL expression in the basic block.
We check the type of expression and handle it appropriately.
Notably, if the expression represents an operation and thus has
operands, we first add the operation to the abstract syntax tree.
We then recursively descend on the operands, evaluate them,
and add them as children to the operation. If the expression is

4A tail call usually indicates that the function jumps to a separate subrou-
tine, often within another linked executable.

5After our experiments, we implemented a slightly different approach using
LLIL which Vector 35 merged into the Binary Ninja API in pull request #3343.
[40]

261

def get_starting_block(
function: Function)
-> BasicBlock:

If the block has no incoming edge
it must be reached by the start
of the function.
for block in function.basic_blocks:

if not block.incoming_edges:
return block

Otherwise, get the source of the
first block's back edge.
for edge in function.basic_blocks[0]

.edges:
if edge.back_edge:

return edge.source

Listing 1: Visiting the starting block of each function.

def visit_expr(block: BasicBlock,
expr: ExpressionType) -> Node:

children = []
if isinstance(expr, Constant):

Lookup the value of the constant.
elif hasattr(expr, 'operands'):

for operand in expr.operands:
children.append(

visit_expr(operands))
elif hasattr(expr, 'name'):

children.append(
visit_expr(expr.name)

...
At the last expression in the block.
Check if there are outgoing edges.
if expr == block[-1]:

Visit the target block
of each outgoing edge.

return Node(expr, children)

Listing 2: Visiting the expressions in each basic block.

a constant, we can return the literal value of the constant as a
string. Other cases are possible, such as SSA version numbers
and expression names.

Constructing the control flow graph and program depen-
dence graph is more straightforward and does not create new
nodes; the abstract syntax tree is the only graph that adds
additional nodes [12]. First, we consider all of the functions’
basic blocks to construct the control flow graph. Then, for
each block, we examine the outgoing edges of the block. Of
those outgoing blocks, we add an edge onto the control flow
graph connecting the source block’s last instruction to the first
instruction of the target block. We then iterate down all the
blocks’ expressions and add an edge between them.

Binary Ninja exposes each function’s dominance frontier,
allowing us to construct the program dependence graph. First,
we examine each basic block and observe which children

it dominates, if any. We then add an edge between the last
instruction of the dominating block and the first instruction of
the child block. Note that this does not explicitly add edges
between data dependencies in the function - it only shows the
program dependencies. However, because we consider only
the SSA representations of BNIL, we implicitly gain the data
dependencies because no variable is ever assigned twice.

We combine all three graphs to form the code property
graph as described in [12]. Since each node can have multiple
parallel edges, each graph must be in the form of a multi-
digraph. Finally, we save the results as GraphML files. The
number of GraphML files equals the total number of functions
found in all of the .bndb files.

C. graph2vec

We created a graph2vec model instance as described in
[16] and implemented in the Karate Club [41] Python library
[42]. The model takes all of the GraphML files and reads them
in as NetworkX graphs [43]. We then fit the model with all
of the NetworkX graphs. The model emits the whole graph
embeddings for each function as a 2-D array of continuous
values from -1.0 to 1.0 floating point across 128 dimensions.
Graphs that are similar in the embedding space also share
similar structural patterns, which is the basis of this experiment
[41].

D. Training and Classification

We created a Random Forest Classifier within scikit-learn
[37] with default hyperparameters. The graph embeddings
from the previous stage served as the feature vector for
the supervised machine learning model. We split the list of
embeddings into 80% training and 20% testing data, resulting
in 102,400 and 25,600 samples, respectively. The model was
fit with the training data and the known compiler labels (i.e.,
which embedding mapped to which compiler, clang or gcc).
This created our supervised model, ready for predicting the
classification of future graph embeddings.

IV. RESULTS

We performed our experimentation on a macOS desktop
equipped with an Intel Xeon W-3235 with 24 virtual cores
clocked at 3.3GHz with 96 GB of RAM running at 2933MHz.
Analysis of the 2,972 executables to create an equal amount of
.bndb files took 23 hours and 59 minutes, averaged 290.2%
processor usage, and utilized a peak of 50.96 GiB of memory.
Both the executables and the .bndb files are available at [44].
Constructing the 8,553,214 GraphML files from the executa-
bles, equal to the number of non-thunk functions uncovered
by Binary Ninja, took 93 hours and 16 minutes, utilized an
average of 162% of the processor, and a peak of 28.2 GiB of
RAM.6

Since the Karate Club implementation of graph2vec does
not have an iterative learning model, we had to load all of

6The use of multiple cores was only due to Binary Ninja opening .bndb
files, and the remainder of the analysis was single threaded. In practice, this
step of the analysis is highly parallelizable. To implement, limit the number
of Binary Ninja workers to one thread.

262

clang gcc

cla
ng

gc
c

12774 0

0 12826

0

2000

4000

6000

8000

10000

12000

Fig. 2. Confusion matrix depicting the actual values versus the random forest’s
predicted values.

the graph embeddings into memory simultaneously to fit the
model. Unfortunately, given our machine’s constraints, we
could not load all the GraphML files from the previous step
into memory. Instead, we took a random sample of 64,000
GraphML files from both the clang and gcc graphs. We
then fit graph2vec model with these NetworkX graphs. This
step consumed 11.04 GiB of memory which took 24 minutes
and 19 seconds at 100% processor utilization.

Fitting the Random Forest Classifier with the embeddings
took 68 seconds at 100% CPU utilization - the quickest step in
our process - and consumed 1.012 GiB RAM.7 We then tested
our model on the 20% testing data. With this, we found a per-
fect model that correctly predicted the results for each sample
in the testing set. We present the results in the confusion matrix
in Figure 2. Accordingly, we obtained a precision and recall
score of 1.00. This result is commensurate with Pizzolotto and
Inoue’s findings in [38], where the authors achieved a 99.95%
accuracy score when discriminating between clang and gcc.

We experimented several times with varying splits of the
training and testing sets. We found that the model’s accuracy
did not drop below 99% until the testing set was 99.7% of
the total samples, leaving just 384 graphs in the training set.
With this small training set, the model achieved an accuracy
score of 98.8%, an F1 score of 99.5%, and an area under the
curve score of 98.1%. The excellent results with such limited
training samples suggest the compilers frequently implement
the same structural patterns across functions and that there is
little benefit to training on additional samples compiled in the
same manner.

V. CONCLUSION

In this paper, we described a workflow to automatically label
executables, with no knowledge of the source code or informa-

7Should this ever become a bottleneck, sklearn does offer an iterative
learning method for the Random Forest classifier.

tion used to compile it, as being compiled with either clang
or gcc. The immediate goal of our project was to determine
if the code property graph constructed from the intermediate
language lifted from the machine code of an executable would
still yield meaningful information. Our results indicate that we
can still determine structural differences in executables at the
function level, even when those functions are lifted to higher
level abstract representations.

We focused on determining compiler information because
of the relative ease of obtaining a labeled dataset. Other
experiments have demonstrated the ability to extract graphical
structural differences using the code property graph to find
vulnerabilities [15]. However, these experiments relied on
representing the executable as a source code language, such
as pseudo-C using Ghidra’s decompiler [15]. Since we have
demonstrated the implementation of the code property graph
in an intermediate language and know that these languages
can provide more semantic meaning [3] than assembly, we
hope that this will be beneficial for automatically extracting
additional information from executables, such as the likelihood
of vulnerabilities appearing in a given function.

A. Future Work

We have several recommendations for future researchers
who intend to implement our approach. Additional work is
needed to improve the speed at which programs are decom-
piled into Binary Ninja database files and then saved in a
GraphML format. Vector 35 released a performance release in
version 3.1 in 2022 that improved analysis time by 300% when
compared to previous releases [45]. It is unlikely for third-
party developers or researchers to improve on those analysis
times significantly. However, it is possible to perform analysis
on separate executables in parallel using a tool like GNU
Parallel [46]. Using multiple processes would increase the
number of executables analyzed simultaneously.

Additional effort should focus on improving the construc-
tion speed of the code property graph. While the algorithm is
linear with respect to the number of nodes in the abstract syn-
tax tree, the current implementation makes additional passes
over the tree to build the other graphs and to ensure accuracy.

This experiment considered only executables compiled for
the amd64 architecture to the ELF file format. However, given
that BNIL is architecture agnostic, it is likely that the results of
this experiment hold for other architectures, such as mips and
arm, as well as other file formats like Mach-O and a.out.

We examined all of the functions that were not thunks in
the executable. In [38], Pizzolotto and Katsuro found that they
could infer compiler information with access to as little as 65
bytes of the program. Similarly, it may be possible to build
the code property graph for slices of the program rather than
explicitly creating graphs at the function level.

To further reduce the problem space, it may be the case that
individual program functions, since they were compiled into
a single program and not separately, share certain similarities
that make training on multiple functions from the same pro-
gram redundant. A future approach could construct the dataset

263

by looking solely at a single function from each program,
such as the entry point. Fewer samples representing the same
information would decrease the time spent at all stages of
analysis.

BNIL implements SSA form to construct higher abstraction
layers, like LLIL, MLIL, HLIL, and pseudo-C. SSA provides
information on detected data dependencies but offers nothing
about the conditions that led to the data creation. There is
an additional representation, single static information (SSI)
form, that would yield further information about the conditions
that led to the creation of data [47]. Should an intermediate
language natively expose SSI form, it may prove beneficial
to embed that information into the edges of the program
dependence graph for an additional training metric.

Finally, additional unsupervised graph neural networks exist
that create embeddings that can yield higher classification
accuracy, such as InfoGraph introduced by Sun, Hoffmann,
Verma, and Tang in [48]. However, we did not observe these
models implemented in Karate Club or any similar Python
library. Pending implementation, future program classification
tasks may benefit from these models.

ACKNOWLEDGMENT

The author thanks Ryan O’Neal and Austin Norby for as-
sisting in interpreting results and providing mentorship during
the project.

Binary NinjaTM and the Binary NinjaTM logo are registered
trademarks of Vector 35. Express permission was given for
their use to appear in this publication. IDATM is a trademark
of Hex-Rays. There was no intent to infringe on the rights of
any trademark owner.

REFERENCES

[1] J. A. Harer, L. Y. Kim, R. L. Russell, O. Ozdemir, L. R. Kosta,
A. Rangamani, L. H. Hamilton, G. I. Centeno, J. R. Key, P. M.
Ellingwood, M. W. McConley, J. M. Opper, S. P. Chin, and
T. Lazovich, “Automated software vulnerability detection with machine
learning,” CoRR, vol. abs/1803.04497, 2018. [Online]. Available:
http://arxiv.org/abs/1803.04497

[2] Q. Chen, J. Lacomis, E. J. Schwartz, C. L. Goues, G. Neubig, and
B. Vasilescu, “Augmenting decompiler output with learned variable
names and types,” 2021. [Online]. Available: https://arxiv.org/abs/2108.
06363

[3] Z. Liu and S. Wang, “How far we have come: Testing decompilation
correctness of c decompilers,” in Proceedings of the 29th ACM
SIGSOFT International Symposium on Software Testing and Analysis,
ser. ISSTA 2020. New York, NY, USA: Association for Computing
Machinery, 2020, p. 475–487. [Online]. Available: https://doi.org/10.
1145/3395363.3397370

[4] R. Liang, Y. Cao, P. Hu, and K. Chen, “Neutron: an attention-based
neural decompiler,” Cybersecurity, vol. 4, no. 1, pp. 1–13, 2021.

[5] M. Alazab, S. Venkataraman, and P. Watters, “Towards understanding
malware behaviour by the extraction of api calls,” in 2010 Second
Cybercrime and Trustworthy Computing Workshop, 2010, pp. 52–59.

[6] J. Yuan and S. Ding, “A method for detecting buffer overflow vulnera-
bilities,” in 2011 IEEE 3rd International Conference on Communication
Software and Networks, 2011, pp. 188–192.

[7] joernio, “Joern - the bug hunter’s workbench.” [Online]. Available:
https://github.com/joernio/joern

[8] W. Xiaomeng, Z. Tao, W. Runpu, X. Wei, and H. Changyu, “Cpgva:
Code property graph based vulnerability analysis by deep learning,” in
2018 10th International Conference on Advanced Infocomm Technology
(ICAIT), 2018, pp. 184–188.

[9] X. Duan, J. Wu, S. Ji, Z. Rui, T. Luo, M. Yang, and Y. Wu,
“Vulsniper: Focus your attention to shoot fine-grained vulnerabilities,”
in Proceedings of the Twenty-Eighth International Joint Conference on
Artificial Intelligence, IJCAI-19. International Joint Conferences on
Artificial Intelligence Organization, 7 2019, pp. 4665–4671. [Online].
Available: https://doi.org/10.24963/ijcai.2019/648

[10] Z. Haojie, L. Yujun, L. Yiwei, and Z. Nanxin, “Vulmg: A static detection
solution for source code vulnerabilities based on code property graph and
graph attention network,” in 2021 18th International Computer Confer-
ence on Wavelet Active Media Technology and Information Processing
(ICCWAMTIP), 2021, pp. 250–255.

[11] M. Allamanis, M. Brockschmidt, and M. Khademi, “Learning
to represent programs with graphs,” in International Conference
on Learning Representations, 2018. [Online]. Available: https:
//openreview.net/forum?id=BJOFETxR-

[12] F. Yamaguchi, N. Golde, D. Arp, and K. Rieck, “Modeling and discover-
ing vulnerabilities with code property graphs,” in 2014 IEEE Symposium
on Security and Privacy, 2014, pp. 590–604.

[13] F. E. Allen, “Control flow analysis,” in Proceedings of a Symposium
on Compiler Optimization. New York, NY, USA: Association
for Computing Machinery, 1970, p. 1–19. [Online]. Available:
https://doi.org/10.1145/800028.808479

[14] J. Ferrante, K. J. Ottenstein, and J. D. Warren, “The program
dependence graph and its use in optimization,” ACM Trans. Program.
Lang. Syst., vol. 9, no. 3, p. 319–349, jul 1987. [Online]. Available:
https://doi.org/10.1145/24039.24041

[15] L. Zhou, M. Huang, Y. Li, Y. Nie, J. Li, and Y. Liu, “Grapheye: A novel
solution for detecting vulnerable functions based on graph attention
network,” in 2021 IEEE Sixth International Conference on Data Science
in Cyberspace (DSC), 2021, pp. 381–388.

[16] A. Narayanan, M. Chandramohan, R. Venkatesan, L. Chen, Y. Liu, and
S. Jaiswal, “graph2vec: Learning distributed representations of graphs,”
2017. [Online]. Available: https://arxiv.org/abs/1707.05005

[17] A. Grover and J. Leskovec, “node2vec: Scalable feature learning for
networks,” 2016. [Online]. Available: https://arxiv.org/abs/1607.00653

[18] P. Yanardag and S. Vishwanathan, “Deep graph kernels,” in Proceedings
of the 21th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, ser. KDD ’15. New York, NY, USA:
Association for Computing Machinery, 2015, p. 1365–1374. [Online].
Available: https://doi.org/10.1145/2783258.2783417

[19] A. Narayanan, M. Chandramohan, L. Chen, Y. Liu, and S. Saminathan,
“subgraph2vec: Learning distributed representations of rooted sub-
graphs from large graphs,” 2016. [Online]. Available: https://arxiv.org/
abs/1606.08928

[20] W. Mahoney and J. T. McDonald, “Enumerating x86-64–it’s not as easy
as counting.”

[21] “Pcode operations.” [Online]. Available: https://ghidra.re/ghidra docs/
api/constant-values.html

[22] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and
F. K. Zadeck, “Efficiently computing static single assignment form
and the control dependence graph,” ACM Trans. Program. Lang.
Syst., vol. 13, no. 4, p. 451–490, oct 1991. [Online]. Available:
https://doi.org/10.1145/115372.115320

[23] C. Cummins, Z. V. Fisches, T. Ben-Nun, T. Hoefler, M. F. P. O’Boyle,
and H. Leather, “Programl: A graph-based program representation for
data flow analysis and compiler optimizations,” in Proceedings of the
38th International Conference on Machine Learning, ser. Proceedings
of Machine Learning Research, M. Meila and T. Zhang, Eds., vol.
139. PMLR, 18–24 Jul 2021, pp. 2244–2253. [Online]. Available:
https://proceedings.mlr.press/v139/cummins21a.html

[24] N. Grech, K. Georgiou, J. Pallister, S. Kerrison, J. Morse, and K. Eder,
“Static analysis of energy consumption for llvm ir programs,” in
Proceedings of the 18th International Workshop on Software and
Compilers for Embedded Systems, ser. SCOPES ’15. New York, NY,
USA: Association for Computing Machinery, 2015, p. 12–21. [Online].
Available: https://doi.org/10.1145/2764967.2764974

[25] F. Cassez, A. M. Sloane, M. Roberts, M. Pigram, P. Suvanpong, and
P. G. de Aledo, “Skink: Static analysis of programs in llvm intermediate
representation,” in Tools and Algorithms for the Construction and
Analysis of Systems, A. Legay and T. Margaria, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2017, pp. 380–384.

[26] E. Schulte, J. Dorn, A. Flores-Montoya, A. Ballman, and T. Johnson,
“Gtirb: Intermediate representation for binaries,” 2019. [Online].
Available: https://arxiv.org/abs/1907.02859

264

http://arxiv.org/abs/1803.04497
https://arxiv.org/abs/2108.06363
https://arxiv.org/abs/2108.06363
https://doi.org/10.1145/3395363.3397370
https://doi.org/10.1145/3395363.3397370
https://github.com/joernio/joern
https://doi.org/10.24963/ijcai.2019/648
https://openreview.net/forum?id=BJOFETxR-
https://openreview.net/forum?id=BJOFETxR-
https://doi.org/10.1145/800028.808479
https://doi.org/10.1145/24039.24041
https://arxiv.org/abs/1707.05005
https://arxiv.org/abs/1607.00653
https://doi.org/10.1145/2783258.2783417
https://arxiv.org/abs/1606.08928
https://arxiv.org/abs/1606.08928
https://ghidra.re/ghidra_docs/api/constant-values.html
https://ghidra.re/ghidra_docs/api/constant-values.html
https://doi.org/10.1145/115372.115320
https://proceedings.mlr.press/v139/cummins21a.html
https://doi.org/10.1145/2764967.2764974
https://arxiv.org/abs/1907.02859

[27] lifting bits, “McSema.” [Online]. Available: https://github.com/
lifting-bits/mcsema

[28] KyleMiles, “McNinja.” [Online]. Available: https://github.com/
KyleMiles/McNinja

[29] spinsel, “P-Code Reference Manual,” September
2017. [Online]. Available: https://spinsel.dev/assets/
2020-06-17-ghidra-brainfuck-processor-1/ghidra docs/language
spec/html/pcoderef.html

[30] I. Guilfanov, “Decompiler internals: microcode,” August
2018. [Online]. Available: https://i.blackhat.com/us-18/Thu-August-9/
us-18-Guilfanov-Decompiler-Internals-Microcode-wp.pdf

[31] “Binary ninja intermediate language series, part 0: Overview.” [Online].
Available: https://docs.binary.ninja/dev/bnil-overview.html

[32] BinaryAnalysisPlatform, “Bap.” [Online]. Available: https://github.com/
BinaryAnalysisPlatform/bap

[33] Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens, M. Polino,
A. Dutcher, J. Grosen, S. Feng, C. Hauser, C. Kruegel, and G. Vigna,
“Sok: (state of) the art of war: Offensive techniques in binary analysis,”
2016.

[34] T. Dullien and S. Porst, “Reil: A platform-independent intermediate
representation of disassembled code for static code analysis,” 01 2009.

[35] G. Team. (2002) The graphml file format. [Online]. Available:
http://graphml.graphdrawing.org/

[36] [Online]. Available: https://www.hex-rays.com/cgi-bin/quote.cgi/
products

[37] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825–2830, 2011.

[38] D. Pizzolotto and K. Inoue, “Identifying compiler and optimization level
in binary code from multiple architectures,” IEEE Access, vol. 9, pp.
163 461–163 475, 2021.

[39] K. I. Davide Pizzolotto, “Binary software compiled for different
architectures with different optimization levels,” Apr. 2021. [Online].
Available: https://doi.org/10.5281/zenodo.4659370

[40] Vector-35, “binaryninja-api.” [Online]. Available: https://github.com/
Vector35/binaryninja-api

[41] B. Rozemberczki, O. Kiss, and R. Sarkar, “Karate Club: An API
Oriented Open-source Python Framework for Unsupervised Learning
on Graphs,” in Proceedings of the 29th ACM International Conference
on Information and Knowledge Management (CIKM ’20). ACM, 2020,
p. 3125–3132.

[42] benedekrozemberczki, “Karate club,” June 2022. [Online]. Available:
https://github.com/benedekrozemberczki/karateclub

[43] A. Hagberg, P. Swart, and D. S Chult, “Exploring network structure,
dynamics, and function using networkx,” 1 2008. [Online]. Available:
https://www.osti.gov/biblio/960616

[44] S. Deaton, “Compiled executables and their resulting Binary Ninja
database files,” Jul. 2022. [Online]. Available: https://doi.org/10.5281/
zenodo.6863087

[45] J. Wiens, “3.1 the performance released,” May 2022. [Online]. Available:
https://binary.ninja/2022/05/31/3.1-the-performance-release.html

[46] “Batch processing and other automation tips.” [Online]. Available:
https://docs.binary.ninja/dev/batch.html

[47] C. S. Ananian, “The static single information form,” Ph.D. dissertation,
Massachusetts Institute of Technology, 2001.

[48] F.-Y. Sun, J. Hoffmann, V. Verma, and J. Tang, “Infograph:
Unsupervised and semi-supervised graph-level representation learning
via mutual information maximization,” 2019. [Online]. Available:
https://arxiv.org/abs/1908.01000

Sean Deaton (Member, IEEE) is from O‘ahu,
Hawai‘i. He received a B.S. in computer science
from the United States Military Academy at West
Point, NY, in 2017 and an M.S. in computer science
from the Georgia Institute of Technology in Atlanta,
GA, in 2021.

From 2017 to early 2022, he was a vulnerability
researcher with U.S. Army Cyber. Since 2022, he
has been a senior vulnerability researcher with Blue
Star Cyber. His research interests include binary ex-
ploitation, uncovering security flaws, machine learn-

ing, and capturing flags.

265

https://github.com/lifting-bits/mcsema
https://github.com/lifting-bits/mcsema
https://github.com/KyleMiles/McNinja
https://github.com/KyleMiles/McNinja
https://spinsel.dev/assets/2020-06-17-ghidra-brainfuck-processor-1/ghidra_docs/language_spec/html/pcoderef.html
https://spinsel.dev/assets/2020-06-17-ghidra-brainfuck-processor-1/ghidra_docs/language_spec/html/pcoderef.html
https://spinsel.dev/assets/2020-06-17-ghidra-brainfuck-processor-1/ghidra_docs/language_spec/html/pcoderef.html
https://i.blackhat.com/us-18/Thu-August-9/us-18-Guilfanov-Decompiler-Internals-Microcode-wp.pdf
https://i.blackhat.com/us-18/Thu-August-9/us-18-Guilfanov-Decompiler-Internals-Microcode-wp.pdf
https://docs.binary.ninja/dev/bnil-overview.html
https://github.com/BinaryAnalysisPlatform/bap
https://github.com/BinaryAnalysisPlatform/bap
http://graphml.graphdrawing.org/
https://www.hex-rays.com/cgi-bin/quote.cgi/products
https://www.hex-rays.com/cgi-bin/quote.cgi/products
https://doi.org/10.5281/zenodo.4659370
https://github.com/Vector35/binaryninja-api
https://github.com/Vector35/binaryninja-api
https://github.com/benedekrozemberczki/karateclub
https://www.osti.gov/biblio/960616
https://doi.org/10.5281/zenodo.6863087
https://doi.org/10.5281/zenodo.6863087
https://binary.ninja/2022/05/31/3.1-the-performance-release.html
https://docs.binary.ninja/dev/batch.html
https://arxiv.org/abs/1908.01000

